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We extend the well-known Mattis model to the case of asymmetric bond dis- 
tributions. Although the partition function is identical with that of the pure 
ferromagnetic Ising model (FIM) when the external field is absent, the response 
to the external field is nontrivial even at zero field. There are some exact rela- 
tions between the present model and the FIM in the correlation functions, from 
which the phase diagram and critical exponents can be determined. Multicritical 
behavior and some other interesting phenomena typical for a random system 
are demonstrated by this model. 

KEY WORDS: Mattis model; random system; spins glass; + J  model; 
correlation function; critical exponent; universality. 

1. I N T R O D U C T I O N  

It has been a fascinating subject in physics for a long time to study the 
effects of randomness on cooperative systems. One of the most interesting 
problems is the spin-glass problem/1-3~ Some recent theoretical develop- 
ments in this field originate from investigations of the _+ J Ising model in 
finite dimensions, (4-12) which is regarded as the typical model of spin 
glasses. Although an important problem, the existence of a spin-glass phase 
at finite temperatures, has been confirmed positively in three dimensions 
and negatively in two dimensions for symmetric bond distributions in the 
___J model, (6-9) there are some unclarified problems in the asymmetric 
case, (5'1~ such as the universality and the weak universality of 
ferromagnetic and/or spin-glass critical exponents, the shape of the 
ferromagnetic phase boundary at low temperatures, the existence and the 
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nature of the random antiphase state or the mixed phase, and so on. 
Although there are many investigations in this field, reliable results are 
scarce, since theoretical treatments of this model are complicated due to 
the randomness of the bond configuration as well as the frustration. 

It is useful for understanding the thermodynamic and critical 
behaviors in random systems and for checking the validity of methods to 
analyze these systems if a solvable random model is introduced. Mattis 
proposed a simple solvable model with random exchange interactions, {13) 
called the Mattis model, which has a symmetric bond distribution con- 
taining no frustrated plaquettes. As an analog for the asymmetric _+J 
model, we extend the (symmetric) Mattis model to the case of asymmetric 
bond distributions, which we call the asymmetric Mattis model (AMM). 
Although the Mattis model has been understood to be insufficient for a 
model of real spin glasses because its dynamical behavior is too simple 
due to the lack of frustration, there is some nontrivial behavior in the 
response to an external field even at zero field. Moreover, in the AMM, 
one can demonstrate exactly multicritical behavior and some interesting 
phenomena expected in such random systems. 

In the next section, we define the AMM. In Section 3 analytic proper- 
ties for the free energy and the correlation functions are derived. In 
Section 4 we derive the phase diagram and critical exponents using the 
results in Section 3. Concluding remarks are given in the last section. 

2. DEFINIT ION OF THE A S Y M M E T R I C  
M A T T I S  M O D E L  

The Hami l tonian we consider is 

J g { S } { J }  = - ~ JuSiSj (S ,=  +1) (2.1) 
( i j)  

where ( 0 )  runs over the nearest-neighboring pairs on a d-dimensional 
hypercubic lattice with N sites. Each bond J~ takes a value + J  or - J  
randomly. The thermal average of a physical quantity at inverse tem- 
perature fl for one particular bond configuration {J} is given by 

where 

( . . . )  {J},~ = • {s}""" exp( - flJ{~{S} {J}) 
52{s } exp(-fl~{S}{J}) 

2 = 2  2 . . - 2  
{S} SI = •  $ 2 =  _+1 SN= +1 

(2.2) 
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For the Mattis model, ~ the bond J~ is determined by 

J~ = Jz,zj (2.3) 

as there are no frustrated plaquettes in the lattice. The dimensionless 
random variable zi associated with the ith site takes a value + 1 or - 1. In 
the symmetric case, in which the concentration of ferromagnetic bonds p is 
1/2, each variable Ti is selected independently. Thus, the bond average is 
expressed as 

Z 
{3} 

(2.4) 

where 

2=- 2 2 2 
{z} rl = • v2= ~1 r u +1 

In the present paper, the average in terms of the spin variables {S} is 
denoted by the brackets ( - - . ) ,  and that of {z} (or {J}) by [ . . . ] .  

Let us define the concentration of ferromagnetic bonds for a bond 
configuration {J}, 

2 <~> J u + J  (2.5) 
c { J } =- -f~ . 2J 

where z is the coordination number, which is equal to 2d for a d-dimen- 
sional hypercubic lattice. Note that the bond average (2.4) is defined 
similar to a canonical ensemble in the sense that c{J}  amounts to 1/2 as 
an average. Thus, the bond average (2.4) is denoted by F...I(M.o). c ,1/2 , thef i r s t  
letter of the superscript, M, comes from the name of the model, and the 
second letter, c, comes from the "canonical" way. In each bond configura- 
tion, c{J}  is not strictly 1/2 and has a fluctuation of order 1/w/N when the 
system size N is finite. If one defines the bond average in a microcanonical 
way as 

[ . . . ]  ( M , m ) =  Z {~:} "''(~e{J},p (2 .6 )  

~2{r} I~c{J},p 
where 6a, b is the Kronecker delta, then c{J}  is strictly equal to p in each 
bond configuration. Due to the usual arguments for the "equivalence of 
ensembles (14'~5)'', it is reasonable to expect that the two different ways of 

" l (M'c)  in Eq. (2.4) and [ . . . ] ( M , m ) i n  Eq. (2.6) with bond averaging, [.- j1/2 
p = 1/2, become identical in the thermodynamic limit N ~ Go. Therefore, we 



762 Ozeki 

regard [...](M,m) as the bond average of the AMM hereafter. We remark 
that not all values of p between 0 and 1 can be realized if N is finite; the 
possible values are ordered discretely in intervals of order (zN) 1, whose 
lengths vanish when N ~ oo. 

The extension of the symmetric Mattis model to the asymmetric case 
is complicated, since it is not unique. There are several ways different from 
Eq. (2.6). One may ask why we choose [...](M,m) To answer this question, p 

we consider the asymmetric _+J model. The expressions for the 
Hamiltonian and the thermal average are identical with the Mattis model, 
Eqs. (2.1)-(2.2). For the symmetric case, the configuration average of bond 
randomness is given by 

! 
1"'" 1/2 --2zN/2 ~ "'" (2.7) 

{g} 
where 

{s} J,j= +s 

It is straight forward to extend Eq. (2.7) to the asymmetric case. Since each 
bond J0 is an independent random variable, one can define the distribution 
function of J,j as 

P g(Jo; P) = p6(J~-  J) + (1 - p) 6(Jij + J) (2.8) 

in which the symmetric case is recovered when p = 1/2. Using Eq. (2.8), one 
may rewrite the bond average (2.7) by 

with 

["']~+-J'c3= f ""P{p+-a){J} l-[ dJo (2.9) 
<,J> 

P~++-J){J} = [I  PJ(Jij; P) (2.10) 
<6> 

Thus, setting p va 1/2, one obtains the bond average of the asymmetric + J 
model 

[ . .  ](+J,c) 2 PzNc{J}/Z(1--P) zN(l-c{J})/2"" (2.11) 
{J} 

Similarly to the case of the AMM, the bond average in a microcanonical 
way can be defined as 

[..  71 (-+ J,~) = ~2{j} '--(Sc{S},p (2.12) 
JP ~]{J} g)c{J},p 
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It is plausible that the configuration average [.. 1 (-+s'c} in Eq. (2.9) and 
[..-1 (-+s'ml in Eq. (2.12) become identical in the thermodynamic limit. ~ p  

It is easy to see that the expression for the bond average in the 
microcanonical way for the AMM, Eq. (2.6), is a natural extension of that 
for the asymmetric _+J model, Eq. (2.12). The only difference between them 
is the variable taken in the summation. 

It is possible to define the bond average of the symmetric Mattis 
model instead of Eq. (2.4) using the distribution function of the local 
variable such as Eqs. (2.8)-(2.10), 

P,(,~; 1/2) = �89 1) + �89 1) (2.13) 

With the distribution function of a bond configuration {z}, 

P~2){ ~ } = l-[ P~(T;; 1/2) (2.14) 
i 

the "canonical" bond average is expressed as 

.1 (r,.c~ = f - �9 - , , (~gz ~ I ]  dzi (2.15) [ ' "  A 1 / 2  / I  1/2 t J 
i 

For the asymmetric case, using the distribution function 

P,(z~; p ')  = p '6(z~-  1) + (1 - p ')  6(r~ + 1) (2.16) 

instead of Eq. (2.13), one can find that p' does not equal the concentration 
of ferromagnetic bonds p, but is related to it by p = / 2  + (1 - p , ) 2 .  Then, 
Eq. (2.15) with Eqs. (2.14) and (2.16) is another possible version of the 
AMM instead of Eq. (2.6). Nevertheless, we use Eq. (2.6) as the distribu- 
tion of the AMM, since the effects of randomness in Eq. (2.16) are so 
simple that there are no phase transitions for intermediate concentrations 
of p', whereas some nontrivial behavior exists as a function of p in 
Eq. (2.6), as will be shown later. 

The essential difference between them is related to the so-called (spin)- 
reversal symmetry; the distribution function (2.6) gives the same probabil- 
ity if one transforms zr to -z~ for all i, whereas such symmetry is broken 
in Eq. (2.16) except f o r / =  1/2. Thus, in the case of Eq. (2.16), the correla- 
tion [z0zr] (=  [%] [z r ]  = ( 2 p ' - 1 )  2) is always strictly positive even if the 
distance r goes to infinity. Note that, in general, the ground state of 
Eq. (2.1) with Eq. (2.3) for a fixed {z} has two degenerate spin configura- 
tions, which are identical with {z} and its reversed state. Therefore, the 
above argument means that the ground state is always ferromagnetic for 
Eq. (2.16). 
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3. ANALYTIC PROPERTIES OF THE A S Y M M E T R I C  
MATTIS MODEL 

For simplicity, the magnitude of the exchange interaction J appearing 
in Eqs. (2.3), (2.8), and (2.12) is set to unity hereafter. Using the function 

2 
e{t}- zN ~" ~iTj (3.1) 

<ij> 

one may rewrite the bond average (2.6) by 

[ . . . 3  (pM,m) = ~{ t}  " ' '  Oe{'c}, 1--2p (3.2) 
~'{t} felt},1 2p 

The function e{t} can be regarded as the per-bond energy of the pure 
ferromagnetic Ising model (FIM), 

~v{r}  = - ~ tzrj ( t i=  +_1) (3.3) 
<,J> 

if p >~ 1/2, and that of the pure antiferromagnetic Ising model, 

~FAV{r} = Z t~rJ ( g =  __1) (3.4) 
(0> 

(M.m) in Eq.(2.6) or (3.2) describes the if p~< 1/2. Therefore, [ . . . ]p  
"microcanonical" average with the Hamiltonian ~fV{t} if p>l/2 or 
fffAV{t } if p ~< 1/2. Since the thermodynamic behaviors are almost identical 
if the concentration p is changed to 1 - p, we treat only the region p >~ 1/2 
hereafter. We believe that if N is large enough, the microcanonical average 
(3.2) for the FIM is equivalent to the canonical average ~ given by 

~_,{g...exp(-flp~V{t}) 
F"-J~v'~= Z{~} exp(-/3p~V{t})  (3.5) 

where the effective inverse temperature tip is determined by 

ev(flp ) -  lim 2 (v,~) 1 - 2 p  (3.6) 

Thus, we regard the average [...]~v'c) as a "canonical" bond average for 
the AMM, denoted by [ . . . ]  (pro, c). Clearly, [ . . . ]  (pM.O) with p = 1/2 (/3p = 0) is 
equivalent to [...](m'~ in Eq. (2.4). 1/2 
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The partition function of the Hamiltonian (2.1) is given by 

Z{J} =- ~ exp(-fl~{S}{J}) (3.7) 
{s} 

It follows that Z{J} is invariant under gauge transformations, that is, if the 
spin variables {S} are transformed by any set {a} via 

S i ~ Si(T i (3.8) 

where ai takes a value +1 or -1 .  Setting {a} to {7} in Eq. (3.8) and 
performing the transformation to Eq. (3.7), one obtains 

Z{J}=~ exp(fl ~ SiSj)~Z v (3.9) 
{S} <ij) 

where ZF is the partition function of the FIM. The averaged free energy is 
identical with that of the FIM irrespective of the concentration p, 

f(fi, p)= -f l[ log Z{J} ](p M'm) =fv(fi) (3.10) 

Therefore, the thermodynamic properties, the behaviors of the energy, 
entropy, and specific heat, the critical temperature, and so on are 
equivalent to those of the FIM. 

Note that the above statement breaks down if an external field is 
applied. It is expected that the response to the external field or the thermo- 
dynamic properties in the external field are different and complicated. 
To analyze these properties, we consider two kinds of correlation functions 

(M,m) (3.1l) g(r; fi, p) =- [ ( SoSr ) (:},~] p 

and 

(M,m) (3.12) ~(r;/~, p) -- [{ <SoSr> (j~,e} 23 p 

The behavior of the correlation function g(r; fi, p), called the ferromagnetic 
correlation function, indicates the phase transition between ferromagnetic 
and nonferromagnetic phases. The behavior of ~(r;fl, p), called the 
spin-glass correlation function, indicates the phase transition between 
paramagnetic and ordered phases, including ferromagnetic, antiferro- 
magnetic, and spin-glass phases. By performing the transformation (3.8) 
with {a} set to {,}, we have 

(SoSr)(J,.~ = Z SoSrexp(fl Z SiSjzizJ)/Z{ J} 
{s} <ij> 

= %zrgF(r; fl) (3.13) 
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where gv(r; fl) is the correlation function of the FIM, defined by 

gv(r; fl) -- { SoSr >v.~ (3.14) 

The average ( " ' ) v ,~  denotes the thermal average with the FIM 
Hamiltonian YFF{S}, which is equivalent to [...]~v,c) with the variables {~} 
replaced by {S}. Substituting Eq. (3.13) into (3.12), we obtain 

s (r; t ,  p ) =  t)} 2 (3.15) 

(M,m) is identical to Since the "microcanonical" bond average [ . . . lp  
r...1(F,c) [...]~M,o) or L J~ in the thermodynamic limit, we have 

g(r; t ,  P)= gv(r; t)[%rr](p M'I) 

= gv(r; t )  gv(r; tip) (3.16) 

using Eqs. (3.11 ) and (3.13). Consequently, the thermodynamic behavior of 
the AMM can be explained by the FIM through the free energy fv(fl) and 
the correlation function gv(r; t). 

Note that it is possible to generalize the above procedure to any 
quantity such as A{S} {z}. The averaged quantity is expressed as 

(v.~) (3.17) [ <A{S}{r} >{s},pjpl(M'm)= [ <A{Sv}{V} >F,#]#p 

where {&} is a set with element Siri on the ith site. 

4. PHASE DIAGRAM AND CRITICAL PROPERTIES 

Let us define two kinds of order parameter, 

{m(fl, p)}2 __ lira g(r; fl, p) 
r - -*  o o  

(4.1) 

and 

{q(fl, p)}2= lim R(r; t, P) (4.2) 
r ---~ o o  

In general, the squared magnetization {m(t, p)}2 has a nonzero value in 
the ferromagnetic (FM) phase, and so does the spin-glass order parameter 
{q(fl, p)}2 in any ordered phase, such as the FM, antiferromagnetic, or 
spin-glass phase, m) Thus, both order parameters have nonzero values in 
the FM phase and vanish in the paramagnetic (PM) phase. In the present 
model, there exists an extra phase called the Mattis spin-glass (MSG) 
phase, in which {re(t, p)}2=0 and {q(fl, p)}2>0. When d~>2, there is a 
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finite critical temperature  T~ in the FIM,  and the following asymptot ic  
forms are expected for the correlat ion function: 

roxp @ 

gF(r; f l ) ' "  / rd-2+t/F 

~ . . . .  2 exp{--r/~v(fl)} 
I~ ~mv([:;)} + rY25;--~v 

The function ~V(/?) is the correlat ion length, and t/v denotes the critical 
exponent  for the F I M  (similar notations,  c~v, fi(v el, ?v, and VF, are also used 
for other  exponents).  Using Eqs. (3.15), (3.16), and (4.3), we have 

{m(fi, p ) } 2 =  {mF(fl)}2 {mF(flp)}2 (4.4) 

and 
{q(fl, p ) } a =  {mF(fl)}4 (4.5) 

The resulting phase diagram for d > 2  is shown in Fig. 1 in the p - T p l a n e .  
The critical concentra t ion Pc is determined by the condit ion 

( T >  Tc) 

( T =  To) (4.3) 

( T < r 0  

~ 
Pc ~ ~ c  

w h e r e / ~ c -  1/kB Te, or, equivalently, 

(4.6) 

ev(flc) = 1 -- 2pc (4.7) 

T 

T~ 

\\ ,  ........ PM 
",.,%. 

(If) ..................................... (IV) (I) 
.................... .%,.. 

",,. 

MSG (III) FM ',\ 

0.5 p Pc 1.o 

Fig. 1. The phase diagram of the AMM in the p-T plane for d~> 2. There are three kinds of 
phases, the paramagnetic (PM), the ferromagnetic (FM), and the Mattis spin-glass phases. 
Four kinds of critical regimes are indicated (I IV). The dotted line indicates Eq. (4.8). In the 
case d= 2, one may regard the scale of this diagram as T c = 2.269... and Pc = 0.853 .... 
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In Fig. 1, the dotted line indicates the relation 

ev(fl) = 1 - 2p (4.8) 

which intersects the multicritical point (To, Pc), similar to the Nishimori 
line for the asymmetric +_ J model, 

exp( -2 f l )  = 1 - p (4.9) 
P 

in which J is set to unity. Note that the average per-bond energy, 1 - 2p, 
on the Nishimori line is identical to Eq. (4.8). 

We analyze the critical behavior by using Eqs. (3.10), (3.15), and 
(3.16). Four kinds of critical regime are indicated in the phase diagram of 
Fig. 1: 

(I) T,,~ Tc and p > pc 

(II) T,,~ Tc and p < Pc 

(III) T <  Tc and p ~ p~. 

(IV) T,,~ Tc and p ~ Pc (the multicritical point) 

From Eq. (3.10), the specific heat diverges at/3 =/~c with the exponent 
= ev. Let us denote by/?(e), 7, v, and q the exponents associated with the 

ferromagnetic correlation function g(r; ~, p) (the ferromagnetic critical 
exponents), and by ~(e), ~, ~, and 0 those associated with the spin-glass 
correlation function ~(r; ~, p) (the spin-glass critical exponents). We define 
these exponents using the scaling variable [fl -/3c[ in the critical regimes I, 
II, and IV, and I/~p-/~c] in III and IV; the exponents at the multicritical 
point IV do not change if one chooses t/~-fic[ or I/?p-/3~[ as the scaling 
variable. The exponents tt and g/are defined just at the critical point itself 
and independent of the scaling variable, whereas the other exponents 
depend on it. It should be remarked that the exponents, except for tt and 
0, on III and IV change if the scaling variable I P -  P~.[ is used instead of 
I/~p-/?~l. Noting that the derivative of the energy in terms of the 
temperature is equal to the specific heat, one has 

~eF(flp) I/~p-/~cl ~ I/3p-/~cl ' - ~  (4.10) Ip -pc l  ~ ~ p  

Thus the exponent, for example, v, changes to v/(1-etv) if one uses 
[ P - P c ]  as the scaling variable. To see the effect of the thermal and the 
disorder fluctuations on the phase transitions symmetrically, we redraw the 
phase diagram in the/~p-/~ plane (see Fig. 2). 
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13c 

0.0 
0.0 

/ /  
/ : /  

...... 

Mso 7 ............................ FM 
. / : "  

(II) ......... ilV) (I) 
......" 

..... 
/.. 

/ .  

.......... PM 
/ / :  

/ .  
........ ~ p  

& I 

Fig. 2. The symmetr ic  phase diagram of the A M M  in the/~p-~ plane. 

The exponents fl{e} and ~{~} are determined from Eqs. (4.4) and (4.5) 
and listed in Table I. If we define the correlation lengths associated with the 
correlation functions g(r; fl, p) and ~(r; fl, p) as 

~(fi, p) ~ lirnoo In g(r; fl, p) (4.11) 

and 

((fi, p) - ) i ra  ~ In ~(r; fl, p) 1 (4.12) 

Table I. Critical Exponents of the A M M  for Critical Regions I - IV ~ 

I II III 1V 

~ F  ~ F  - -  ~ F  
j~(e) 2fl (re} 2fl(F e } __ 2,8 ~V, ) 

~7 v F v v - -  v F 

0 d - 2  + 2r/v d - 2  +2r/v  - -  d - - 2 + 2 q F  
27F -- dv v 2yv  -- dv v - -  2y v - dv v 

]~(e) fl(Fe} - -  fl(ve} 2flCve} 

V V F - -  Y F g F 

r 1 fly - -  r/v d -  2 + 2r/v 
Y "IF - -  7F 27F--dVF 

a The exponent  c~ is determined from the exact relation (3.10). The exponents/~(~)v, r/, fl{e), ,7, 
and 0 are determined from the exact relations (3.15) and (3.16). The exponents  7 and ,7 are 
obtained by the scaling relations. The dashes indicate that  corresponding quantit ies are 
analytic and  do not  show singularities in these regimes. 
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the exponents v and ~ are determined as in Table I using Eqs. (3.15) and 
(3.16). From Eqs. (3.15) and (4.3), we derive the critical behavior of the 
spin-glass correlation function on the line T = To, 

~(r; ~, p )  ~ 1/r 2(a- 2 +~v) (4.13) 

Using Eq. (3.16) with Eq. (4.3), we obtain the critical behavior of the 
ferromagnetic correlation function, 

g(r; ~, p)-,~ { m v ( ~ p )  } Z/r a -  2 +"~ (4.14) 

for T =  Tc and p > Pc (on the line I), 

g(r; ~, p ) ~  { m v ( ~ )  } Z/r a -  z + "v (4.15) 

for T <  Tc and p = Pc (on the line III), and 

g(r; fl, p ) ~  1/r 2(d- 2 +"v) (4.t6) 

for T = Tc and p = Pc (at the point IV). The resulting critical exponents q 
and f/are listed in Table I. Assuming the scaling relations 

2 - r l v  = 7F/Vv (4.17a) 

Z - - i t  = 7/v (4.17b) 

2 - 0 = ~7/~ (4.17c) 

one can determine the exponents 7 and ~ as listed in Table I. 
The above results are consistent with the scaling relations 

~v + 2fi(v e) + 7F = 2 (4.18a) 

+ 2//(~) + ~, = 2 (4.18b) 

~ + 2 ~ ) + ~ =  2 (4.18c) 

and the hyperscaling relations 

2 -- c~v = dvv  (4.19a) 

2 - e = d v  (4.19b) 

2 - ~ =dg  (4.19c) 

except for those on the line III. The reason for this inconsistency on III is 
left unsolved. As for the ferromagnetic critical exponents, the universality 
(constancy of/3 (e), 7, and v) and the weak universality (constancy of ~(e)/v, 
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7/v, and t/) hold along the boundary  of the F M  phase, I and III, except for 
the multicritical point. The  universality and weak universality for the spin- 
glass critical exponents  hold along the boundary  of the P M  phases, I and 
II, including the multicritical point. 

It is instructive to demonst ra te  the above results for the case d =  2, in 
which there exists an exactly solved free energy and some highly reliable 
critical exponents  in the FIM.  The energy of the F I M  is given as 

ev(fl) = - c o t h  2fl 

x {1 +27r (2 tanh 2 2 f l -  1) 

~o {1 - (2 sinh 2fi/cosh 2 2fi) 2 sin 2 co} ~/2 
(4.20) 

Using Eqs. (4.7) and (4.20), we evaluate the critical concentrat ion,  
Pc=0 .853  .... The phase diagram in the p - T  plane is identical to Fig. 1. 
Not ing  that  ~V = 0, fl(V e) = 1/8, ?V = 7/4, VV = 1, and qv = 1/4, we construct  
the list of exponents  in Table II. 

In one dimension, the phase transit ion occurs at zero temperature  in 
the FIM.  The tangent  line of Eq. (4.8) does not  become parallel to the 
p axis in finite temperatures.  It is noted that  the asymmetric  Mattis model  
is identical to the + J  model  in one dimension. Since the per -bond energy 
in the F I M  is - t a n h  fl, the line (4.8) is equivalent to the Nishimori  line 
(4.9). The correlat ion function can be calculated as 

[ r o r r ]  (p M'm)= (2p - 1 ) r=  tanh r tip (4.21) 

Table I I .  The critical Exponents in Two Dimensions 

I II Ill 1V 

0 0 - -  0 
fl(e) 1/4 1/4 - -  1/4 

1 1 - -  1 
0 1/2 1/2 - -  1/2 

3/2 3/2 - -  3/2 
fl(~) 1/8 - -  1/8 1/4 

v 1 - -  1 1 
q 1/4 - -  1/4 1~ 
y 7/4 - -  7/4 3/2 
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5. C O N C L U D I N G  R E M A R K S  

We defined the asymmetric Mattis model by extending the symmetric 
one proposed by Mattis. Although the asymmetrization is not unique, the 
present model is a natural extension of the asymmetric +_ J model. In this 
model, there are some nontrivial behaviors in the response to the external 
field even at zero field. The phase diagram and the critical exponents in 
d dimensions are determined in Figs. 1 and 2 and Table I. These results 
may be useful references to the critical phenomena in random systems such 
as the _+Jmodel. The present results are derived for hypercubic lattices; 
however, it is easy to apply them to the AMM on other lattices. As is 
apparent from the phase diagram Figs. 1 and 2 and Table I, the role of the 
thermal fluctuation in the critical behavior is not equivalent to that of the 
disorder. The properties of universal critical exponents in the present model 
are similar to those in the +_J model. (1~ Moreover, this model is one of 
the simplest references for checking a method one needs to apply to more 
complicated random systems. 

Using the transformation (3.8), it is found that the symmetric Mattis 
model with uniform fields - h  ~ i  Si is equivalent to the random-field Ising 
model with independent binary distributions (16 18) 

- J  Z S, S j -h   ,Si (5.1) 

where the variables {z} for the random fields obey the distribution (2.15) 
with Eqs. (2.13) and (2.14). In the case of the AMM with uniform fields, 
another kind of random field Ising model results, which has the same 
Hamiltonian as Eq. (5.1) with the distribution (2.6) or (3.5). In this model, 
it is clear from Eq. (3.5) that the average of each local field [-h~i] (M'm) 
vanishes. The distribution is not independent in the sense that 

(M,m)~;~ [-hT:i](M,m) Eh.Ej](pM, m) ( = 0 )  (5.2) {(hz~)(h~j)] p p 

for any i and j. It has been confirmed that the lower critical dimension of 
the random field Ising model is two. (16 19) Therefore, for the AMM with 
uniform fields, some differences in the thermodynamic properties are 
expected between d =  2 and d>~ 3. 

When p > 1/2, in about half of the disorder configurations the local 
fields are predominantly positive, and in the other half predominantly 
negative. These are the configurations for the two possible p' values [-see 
Eq. (2.16)] corresponding to one p-value. If one uses Eq. (2.16) for 
the distribution of vi, the model is equivalent to a nonzero average 
random-field Ising model with independent distributions ([-h~] :~0 and 

= Emj]). 
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